Разделы

Бизнес Кадры Электроника Импортонезависимость

В России изобрели новый материал для создания персональных суперкомпьютеров

Российские физики получили сверхпроводящий материал, с помощью которого можно будет создавать нечто среднее между обычным и квантовым компьютером. То есть персональное устройство можно будет превратить в суперкомпьютер.

Нанопленки для создания электроники

Ученые из Физического института им. П.Н. Лебедева РАН (ФИАН), Московского физико-технического института и Высшей школы экономики получили новый сверхпроводящий материал на основе нанопленок из аморфного рения, пишут «Известия».

Материал устойчив к внешним воздействиям и сохраняет свойства при относительно высоких температурах. Он может стать основой для сверхпроводящих транзисторов, то есть даст возможность создавать компактные суперкомпьютеры — нечто среднее между обычными и квантовыми вычислительными системами.

Особые свойства рения

В целом сверхпроводимостью обладает почти половина химических элементов, но нужные свойства есть далеко не у всех.

Рений в отличие от ниобия или алюминия не подвержен воздействию внешних факторов, например, он не окисляется на воздухе, а его высокая критическая температура дает возможность применять для работы с ним наиболее дешевые системы охлаждения. Это делает возможным серийное производство устройств на его основе.

Благодаря открытию российских ученых суперкомпьютеры могут уменьшиться до размеров ПК

«В кристаллическом виде рений — тоже сверхпроводник, но его критическая температура (при которой возникает это состояние) довольно низкая — около 1,5 градуса по Кельвину. В аморфной же форме она подскочила до 7–», — пояснил «Известиям» доктор физико-математических наук, ведущий научный сотрудник ФИАН и профессор факультета физики НИУ ВШЭ Александр Кунцевич.

Стабильные аморфные пленки толщиной в несколько десятков нанометров были получены путем нагревания вещества сфокусированным пучком электронов в вакууме. Если соединить аморфный рений с графеном (слой углерода толщиной в один атом), его сверхпроводимость на некоторую глубину «проникает» в графен, благодаря чему появляется возможность управлять данным свойством с помощью электрического поля, пояснил ученый.

Будет ли революция в суперкомпьютерных технологиях?

На основе аморфного рения возможно создание различных перспективных устройств, например, сверхпроводящих транзисторов. По словам Кунцевича, транзистор управляет потоком электронов, но в случае сверхпроводников речь идет о «сверхтоках», которые не рассеивают тепло и обеспечивают значительно более высокую скорость переключения по сравнению с обычной электроникой.

«Если помечтать и предположить в будущем уменьшение криостатов (охладителей) до настольных размеров, то на их основе можно разработать гибридные вычислители с огромной производительностью. Такие «смарт»-устройства произведут революцию в суперкомпьютерных технологиях, сделав их мобильными и персональными. Например, на них можно установить локализованные системы искусственного интеллекта, которые работают без интернета и облачных ресурсов», — полагает Кунцевич.

Открытие ученых интересно тем, что если понять, почему это происходит, вероятно, можно будет увеличить температуру перехода для других сверхпроводников и найти вещества, которые обладают свойствами сверхпроводимости при комнатной температуре, считает заместитель директора Института физических проблем им. П.Л. Капицы РАН Алексей Трояновский.

Как построить масштабируемую систему документооборота для тысяч пользователей
Цифровизация

Но есть и сложности. Трояновский отметил, что это один из самых редких и дорогих металлов. Научный сотрудник центра квантовых коммуникаций НТИ НИТУ МИСИС Алексей Невзоров добавил, что пленки рения чувствительны к загрязнениям и их сложно использовать со стандартной нанолитографией. Заведующий кафедрой физики твердого тела и наносистем НИЯУ МИФИ Михаил Маслов обратил внимание на еще две проблемы — хрупкость аморфных пленок, которая может усложнить производственные процессы, и замеченную ранее деградацию сверхпроводящих свойств пленок при контакте с органическими материалами.

«Вероятно, в ближайшей перспективе предложенный подход найдет применение для создания сверхпроводящих контактов с другими материалами, При этом, чтобы использовать ее, например, в квантовых процессорах, технологии нужно пройти длительный путь внедрения. Аналогичный тому, что прошел алюминий, который сейчас успешно используют для создания сверхпроводниковых искусственных атомов — кубитов», — предположил научный сотрудник лаборатории искусственных квантовых систем МФТИ Сергей Гунин.

Анна Любавина