Разделы

ПО Софт Цифровизация Искусственный интеллект

Разработка ученых Пермского Политеха позволит выявлять аварийные здания с помощью нейросетей

Обслуживающие организации домов часто пренебрегают выполнением периодических осмотров и обследований для определения их технического состояния и своевременного восстановления повреждений. Это в том числе связано с высокой стоимостью обследований. В конечном счете при нерегулярных осмотрах сроки безопасной эксплуатации зданий снижаются. Использование беспилотных летательных аппаратов с автоматическим определением состояния стен позволяет точнее устанавливать наличие дефектов, снизить влияние субъективности экспертов, повысить производительность труда и скорость создания отчетов о состоянии домов. Ученые Пермского Политеха разрабатывают программу с искусственным интеллектом (ИИ), способную выявлять аварийное состояние зданий и его причины по фотографиям трещин. Проектом уже заинтересовалось ведущее промышленное предприятие Пермского края. Об этом CNews сообщили представители ПНИПУ.

Статья опубликована в журнале «Строительные конструкции, здания и сооружения» № 4 за 2024 г. Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».

Сегодня известны технологии автоматического определения дефектов на бетонных зданиях. Кирпичные дома отличаются от них характером трещин: они могут быть короткими и с малым раскрытием. В связи с этим может быть недостаточно разрешения изображений или видео, чтобы определить их при съемке с уровня земли. Также в России есть разработки по выявлению разрушений на кирпичных конструкциях, но они созданы на более старых нейросетях и не устанавливают причины возникновения.

Ученые Пермского Политеха создают технологию с использованием ИИ, которая позволит автоматически распознать трещины на поверхности фасадов зданий и выявить фактор их появления. Для этого эксперты написали код в программе Google Colab, в которую загрузили исходный набор данных для обучения нейросетей. Наличие посторонних предметов, условия съемки и прочее сказываются на результатах и требуют большого объема информации – то есть серьезных временных затрат. Поэтому политехники умышленно ограничили данные до 780 обучающих и 30 тестовых изображений (640×640 пикселей). Этого достаточно для проверки эффективности.

«В основе нашей разработки – сверточные нейросети, которые помогают компьютерам видеть и понимать изображения и видео. По ходу обучения модель тренируется обнаруживать дефекты на фотографиях фасадов с трещинами и без. Она прогнозирует их расположение по «обучающим» фото, сравнивает с правильным вариантом, определяет, насколько ошиблась, и проводит корректировку. Один полный проход по всему обучающему набору данных называется эпохой. Методом подбора количества эпох от 10 до 75 мы выявили, что оптимальное число таких подходов – 50. Если значение меньше, снижается точность показателей, если больше – почти не меняется, но длительность обучения увеличивается примерно в 1,57 раза», – сказал Сергей Крылов, аспирант кафедры «Строительные конструкции и вычислительная механика» ПНИПУ.

Как построить масштабируемую систему документооборота для тысяч пользователей
Цифровизация

«На данный момент программа определяет трещины на тестовых фотографиях за время не более 20 миллисекунд, то есть не менее трех кадров в секунду. Планируется улучшить этот показатель до восьми кадров, что позволит качественно определять дефекты на видео в реальном времени с использованием беспилотных летательных аппаратов. Точность определения сейчас доходит до 60%. В будущем стремимся повысить ее до 95% и более, а также доработать часть, отвечающую за определение причин появления трещин, – сказала Галина Кашеварова, профессор кафедры «Строительные конструкции и вычислительная механика» ПНИПУ, доктор технических наук.

Созданная учеными ПНИПУ программа в дальнейшем позволит повысить точность и скорость своевременного выявления аварийных зданий и тем самым повысит их безопасность. На текущем уровне разработка позволяет ускорять создание технических отчетов о состоянии домов, снижая ручной труд.