Разделы

ПО Софт Бизнес Кадры Искусственный интеллект axenix

Искусственный интеллект научили предсказывать намерения пользователей

Разработка ученых лаборатории нейронных систем и глубокого обучения МФТИ открывает новые горизонты для виртуальных ассистентов и чат-ботов для поддержки клиентов, успешно преодолевая ограничения, характерные для больших языковых моделей. Новая методика может существенно повысить качество диалоговых систем в узкоспециализированных областях, таких как туризм или медицина. Об этом CNews сообщили представители МФТИ.

В последние годы диалоговые системы стали неотъемлемой частью повседневной жизни, претерпев значительные изменения. Эти программы, способные вести беседы с людьми и имитировать человеческие ответы, широко используются в различных сферах — от работы виртуальных ассистентов до поддержки клиентов.

Одной из ключевых задач в области диалоговых систем является предсказание интентов участников диалога, то есть определение скрытого намерения или цели, лежащих в основе конкретного высказывания в диалоге. Например, интенты могут представлять собой заказ такси («Мне нужно такси до аэропорта на 18:00») или бронирование столика в ресторане («Хотел бы забронировать столик на двоих на завтра вечером»). Точное предсказание интента следующего высказывания в диалоге критически важно, поскольку это позволяет диалоговым системам на основе предсказанного интента генерировать контекстно подходящие и эффективные ответы в ходе общения.

На сегодня для решения подобных задач на основе диалоговых данных часто применяются большие языковые модели (LLMs). Однако их эффективность в узкоспециализированных областях ограничена из-за сложностей адаптации к специфическому домену.

Исследователи из Московского физико-технического института (МФТИ) предложили инновационный подход к разработке диалоговых систем, который основан на автоматическом построении диалоговых сценарных графов и предсказании намерений с использованием графовой структуры диалоговых данных. Этот метод не только улучшает точность предсказаний, но и решает другую значимую проблему, связанную с LLMs — прозрачностью генерируемых ими ответов, позволяя понять логику, лежащую в основе каждого конкретного ответа диалоговой системы.

Основой предложенного метода являются графы. С точки зрения математики, граф — это структура, состоящая из узлов (вершин) и соединяющих их линий (ребер). Узлы представляют объекты, а ребра — связи или отношения между ними. Графы широко используются для моделирования различных систем и процессов, таких как социальные сети, транспортные системы, молекулярные структуры и многое другое.

В контексте разработки диалоговый граф представляет собой интерпретируемое представление диалоговой системы, основанное на регулярной структуре диалоговых данных. Такая структура обусловлена тем, что в диалогах, ориентированных на выполнение задач, каждое высказывание участника диалога содержит определенный интент по отношению к другим участникам. Это, в свою очередь, позволяет моделировать диалоги как последовательности интентов с переходами между ними.

CNews подготовил инфографику по одной из крупнейших информационных систем России
Цифровизация

Исследование представляет концепцию многодольного диалогового графа, где каждая доля представляет одну из ролей участников диалога, каждая вершина определяет интент, а ребра в графе представляют переходы между интентами. Необходимость использования многодольности обусловлена тем, что в задачно-ориентированных диалогах участники выполняют разные роли. Это требует отдельного формирования интентов для каждой из ролей ввиду их различной природы и подтверждается результатами экспериментов.

«Сценарные диалоговые графы являются распространенным инструментом в разработке диалоговых помощников. Одной из ключевых проблем, связанных с такими графами, является отсутствие необходимой разметки данных для их построения. Однако процесс ручной разметки требует значительных ресурсов, в то время как наш алгоритм автоматически группирует похожие высказывания на основе диалогового корпуса, определяя интенты участников диалога, которые лежат в основе построения диалогового графа», — сказала один из авторов исследования Дарья Леднева, научный сотрудник лаборатории нейронных систем и глубокого обучения МФТИ.

Она подчеркнула, что использование диалоговых графов позволяет создать графовое представление для каждого отдельного диалога, что в сочетании с графовыми нейронными системами эффективно решает задачу предсказания следующего интента в диалоге по сравнению с другими рассмотренными методами.

В ходе исследования специалисты из МФТИ продемонстрировали методологию разработки диалоговых систем, предложив новый подход к предсказанию интентов с использованием графовых структур. Особое внимание было уделено отличительным особенностям диалоговых данных, ограниченным узкими предметными областями. В целом результаты исследования подтвердили эффективность графовых моделей для повышения точности предсказания интентов в различных доменах диалоговых систем.